LIPN-IIMAS at SemEval-2017 Task 1: Subword Embeddings, Attention Recurrent Neural Networks and Cross Word Alignment for Semantic Textual Similarity

نویسندگان

  • Ignacio Arroyo-Fernández
  • Ivan Vladimir Meza Ruiz
چکیده

In this paper we report our attempt to use, on the one hand, state-of-the-art neural approaches that are proposed to measure Semantic Textual Similarity (STS). On the other hand, we propose an unsupervised cross-word alignment approach, which is linguistically motivated. The neural approaches proposed herein are divided into two main stages. The first stage deals with constructing neural word embeddings, the components of sentence embeddings. The second stage deals with constructing a semantic similarity function relating pairs of sentence embeddings. Unfortunately our competition results were poor in all tracks, therefore we concentrated our research to improve them for Track 5 (EN-EN).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LIPN-IIMAS at SemEval-2016 Task 1: Random Forest Regression Experiments on Align-and-Differentiate and Word Embeddings penalizing strategies

This paper describes the SOPA-N system used by the LIPN-IIMAS team in Semeval 2016 Semantic Textual Similarity (Task 1). We based our work on the SOPA 2015 system. The SOPA-2015 system used 16 similarity features (including Wordnet, Information Retrieval and Syntactic Dependencies) within a Random Forest learning model. We expanded this system with an Align and Differentiate based strategy, wor...

متن کامل

SOPA: Random Forests Regression for the Semantic Textual Similarity task

This paper describes the system used by the LIPN-IIMAS team in the Task 2, Semantic Textual Similarity, at SemEval 2015, in both the English and Spanish sub-tasks. We included some features based on alignment measures and we tested different learning models, in particular Random Forests, which proved the best among those used in our participation.

متن کامل

Lump at SemEval-2017 Task 1: Towards an Interlingua Semantic Similarity

This is the Lump team participation at SemEval 2017 Task 1 on Semantic Textual Similarity. Our supervised model relies on features which are multilingual or interlingual in nature. We include lexical similarities, cross-language explicit semantic analysis, internal representations of multilingual neural networks and interlingual word embeddings. Our representations allow to use large datasets i...

متن کامل

Neobility at SemEval-2017 Task 1: An Attention-based Sentence Similarity Model

This paper describes a neural-network model which performed competitively (top 6) at the SemEval 2017 cross-lingual Semantic Textual Similarity (STS) task. Our system employs an attention-based recurrent neural network model that optimizes the sentence similarity. In this paper, we describe our participation in the multilingual STS task which measures similarity across English, Spanish, and Ara...

متن کامل

UMD-TTIC-UW at SemEval-2016 Task 1: Attention-Based Multi-Perspective Convolutional Neural Networks for Textual Similarity Measurement

We describe an attention-based convolutional neural network for the English semantic textual similarity (STS) task in the SemEval2016 competition (Agirre et al., 2016). We develop an attention-based input interaction layer and incorporate it into our multiperspective convolutional neural network (He et al., 2015), using the PARAGRAM-PHRASE word embeddings (Wieting et al., 2016) trained on parap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017